ІІ Международная конференция

Математическое моделирование в материаловедении электронных компонентов

ФИЦ ИУ РАН, ВМК МГУ, АО НИИМЭ, МАИ

РАСЧЕТ СПЕКТРОВ ОТРАЖЕНИЯ GE-SB-TE ДИФРАКЦИОННОЙ РЕШЕТКИ С ПРИМЕНЕНИЕМ ДИСПЕРСИОННОЙ МОДЕЛИ ТАУЦА–ЛОРЕНТЦА

Рамиль Миннуллин^{1,2,*}, Дмитрий Королев^{1,3}, Александр Сапегин^{1,2}, Михаил Барабаненков^{1,4} ¹АО «НИИМЭ», ²МФТИ (НИУ), ³ННГУ им. Н.И.Лобачевского, ⁴ИПТМ РАН, *rminnullin@niime.ru

Одной из важных задач нанофотоники является разработка оптической энергонезависимой памяти^[1] на основе материалов с изменяемой фазой, способных быстро и обратимо менять свои оптические параметры в результате относительно небольших внешних воздействий. Весьма перспективными для этой задачи являются материалы на основе халькогенидного соединения Ge-Sb-Te (GST), обладающие значительным контрастом оптических характеристик в аморфном и кристаллическом состоянии. Для применения этого материала в качестве активного элемента ячейки оптической памяти – дифракционной решетки, помещенной на волновод структуры кремний-на-изоляторе, – необходим учет его дисперсионных свойств в различных фазовых состояниях. В настоящей работе будут рассмотрены спектры отражения для дифракционной решетки из GST в аморфной и кристаллической фазе, рассчитанные с применением дисперсионной модели Тауца–Лорентца.

Модель дисперсии GST^[2]

MOCKBA

Спектры отражения

Расчет спектров отражения производился с помощью метода матричного уравнения Риккати^[3] для структуры, представляющей собой дифракционную решетку из GST, нанесенную на КНИ волновод (рис. слева).

h	10–100 нм	Λ	0.8 мкм
L	220 нм	W	0.4 мкм
L_{ox}	1 мкм	arphi	0 рад

В работе проведен теоретический расчет спектров отражения в ближнем ИК диапазоне для дифракционных решеток из GST на КНИ волноводе с учетом дисперсии материалов. Полученные спектры будут использованы в дальнейшем для определения оптимальных параметров дифракционных решеток (период, высота, фактор заполнения) для обеспечения наибольшей эффективности оптической ячейки памяти, в частности, с точки зрения уменьшения энергетических затрат на переключение.

Рассчитанные спектры отражения. Пунктирная линия представляет спектр отражения КНИ волновода в отсутствие дифракционной решетки.

Литература

Работа выполнена при поддержке гранта РФФИ № 19-29-03040.

- 1. Ríos C. et al., Integrated all-photonic non-volatile multi-level memory // Nature Photonics, 2015, 9, 725–732
- 2. Orava J. et al., Optical properties and phase change transition in Ge₂Sb₂Te₅ flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry // Journal of Applied Physics, 2008, 104, 4, 043523
- 3. Barabanenkov Yu.N., Barabanenkov M.Yu., Energy invariants of composition rules for scattering and transfer matrices of propagating and evanescent electromagnetic waves in dielectric structures // PIERS, 2006, 2, 10–12